A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions
نویسندگان
چکیده
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditioned `1-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. Numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendreand Hermite-specific algorithms.
منابع مشابه
Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos
Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general pro...
متن کاملPost-Maneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions
This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochast...
متن کاملSparse multiresolution stochastic approximation for uncertainty quantification
Most physical systems are inevitably affected by uncertainties due to natural variabili-ties or incomplete knowledge about their governing laws. To achieve predictive computer simulations of such systems, a major task is, therefore, to study the impact of these uncertainties on response quantities of interest. Within the probabilistic framework, uncertainties may be represented in the form of r...
متن کاملAdaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification
Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification by Justin Gregory Winokur Department of Mechanical Engineering & Materials Science Duke University Date: Approved: Omar M. Knio, Supervisor
متن کاملGeneralized Stochastic Collocation Method for Variation-Aware Capacitance Extraction of Interconnects Considering Arbitrary Random Probability
For variation-aware capacitance extraction, stochastic collocation method (SCM) based on Homogeneous Chaos expansion has the exponential convergence rate for Gaussian geometric variations, and is considered as the optimal solution using a quadratic model to model the parasitic capacitances. However, when geometric variations are measured from the real test chip, they are not necessarily Gaussia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 39 شماره
صفحات -
تاریخ انتشار 2017